Semester-II Paper-1 | | Course | e Title: Bioorgani | ic and Ma | terials Chemistry | | | |--|--|-----------------------|------------------|---|--------------|--| | Programme: Certificate in Bioorganic and Medicinal | | Year: 1 | | Semester: II | | | | Chemistry | | T car. 1 | | | | | | Pape | er-1 | Elec | Elective Subject | | emistry | | | Cours | se Code: B020201T | Course Title: | Bioorgan | ic and Medicinal Chemistry | | | | Course ou | tcomes: Biomolecules | are important for th | e functionii | ng of living organisms. These molecul | es perform | | | or trigger i | mportant biochemical r | eactions in living or | rganisms. V | When studying biomolecules, one can | understand | | | the physio | logical function that reg | gulates the proper g | growth and | development of a human body. This | course aims | | | to introduc | e the students with basic | experimental unders | standing of | carbohydrates, amino acids, proteins, n | icleic acids | | | and medici | nal chemistry. Upon con | mpletion of this cour | rse students | s may get job opportunities in food, be | verage and | | | pharmaceu | itical industries. | | | | | | | | Credits: 4 | | Elective | | | | | Max. Marks: 25+75 Min. Passing Marks: | | | | | | | | | | Total No | of Lecture | es = 60 | | | | Unit | Topics | | | No. of
Lectures | | | | | Chemistry of Carbohydrates: Classification of carbohydrates, reducing and non-reducing | | | | | | | | sugars, General Properties of Glucose and Fructose, their open chain structure. Epimers, | | | | | | | | mutarotation and anomers. Mechanism of mutarotation Determination of configuration of | | | | | | | | Glucose (Fischer's proof). Cyclic structure of glucose. Haworth projections. Cyclic structure | | | | | | | I | of fructose. Inter conversions of sugars (ascending and descending of sugar series, conversion | | | | | | | | of aldoses to ketoses). Lobry de Bruyn-van Ekenstein rearrangement; stepping-up (Kiliani- | | | | | | | | Fischer method) and stepping-down (Ruff's &Wohl's methods) of aldoses; end-group- | | | | | | | | interchange of aldoses Linkage between monosachharides, structure of disacharrides (sucrose, | | | | | | | | maltose, lactose.) | | | | | | | II | Chemistry of Proteins: Classification of amino acids, zwitter ion structure and Isoelectric | | | | | | | | point. Overview of primary, secondary, tertiary and quaternary structure of proteins. | | | | | | | | Determination of primary structure of peptides, determination of N-terminal amino acid (by | | | | | | | | DNFB and Edman method) and C-terminal amino acid (by thiohydantoin and with | | | | | | | | carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection & | | | | | | | | C-activating groups and Merrifield solid phase synthesis. Protein denaturation/renaturation | | | | | | | | Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and | | | | | | | | their role in biological reactions). | | | | | | | III | Chemistry of Nucleic Acids: Constituents of Nucleic acids: Adenine, guanine, thymine and | | | | | | | | Cytosine (Structure only), Nucleosides and nucleotides (nomenclature), Synthesis of nucleic | | | | 05 | | | | acids, Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types | | | | |--------------|---|----|--|--| | | of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and | | | | | | Translation | | | | | | Introductory Medicinal Chemistry: Drug discovery, design and development; Basic | | | | | IV | Retrosynthetic approach. Drug action-receptor theory. Structure –activity relationships of drug | | | | | | molecules, binding role of -OH group,-NH2 group, double bond and aromatic ring. | | | | | | Mechanism of action of the representative drugs of the following classes: analgesics agents, | | | | | | antipyretic agents, anti-inflammatory agents (Aspirin, paracetamol); antibiotics | | | | | | (Chloramphenicol); antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol, | | | | | | Sulphacetamide); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital, | | | | | | Diazepam), Cardiovascular (Glyceryl trinitrate), HIV-AIDS related drugs (AZT- Zidovudine | | | | | | Solid State | | | | | | Definition of space lattice, unit cell. Laws of crystallography – (i) Law of constancy of | | | | | \mathbf{V} | interfacial angles, (ii) Law of rationality of indices and iii) Symmetry elements in crystals and | 05 | | | | · | law of symmetry .X-ray diffraction by crystals. Derivation of Bragg equation. Determination | | | | | | of crystal structure of NaCl, KCl and CsCl (powder method). | | | | | | Introduction to Polymer | | | | | | Monomers, Oligomers, Polymers and their characteristics, Classification of polymers : | | | | | | Natural synthetic, linear, cross linked and network; plastics, elastomers, fibres, | | | | | | Homopolymers and Co-polymers, Bonding in polymers: Primary and secondary bond forces | | | | | | in polymers; cohesive energy, and decomposition of polymers. Determination of Molecular | | | | | VI | mass of polymers: Number Average molecular mass (Mn) and Weight average molecular mass | | | | | | (Mw) of polymers and determination by (i) Viscosity (ii) Light scattering method (iii) Gel | | | | | | permeation chromatography (iv) Osmometry and Ultracentrifuging. | | | | | | Silicones and Phosphazenes –Silicones and phosphazenes as examples of inorganic | | | | | | polymers, nature of bonding in triphosphazenes. | | | | | | Kinetics and Mechanism of Polymerization | | | | | VII | Polymerization techniques, Mechanism and kinetics of copolymerization, Addition or chain- | | | | | | growth polymerization, Free radical vinyl polymerization, ionic vinyl polymerization, Ziegler- | | | | | | Natta polymerization and vinyl polymers, Condensation or step growth-polymerization, | | | | | | Polyesters, polyamides, phenol formaldehyde resins, urea formaldehyde resins, epoxy resins | | | | | | and polyurethanes. | | | | | | Synthetic Dyes: Colour and constitution (electronic Concept), Classification of dyes, | | | | | VIII | Chemistry and synthesis of Methyl orange, Congo red, Malachite green, crystal violet, | 05 | | | | ¥ 111 | phenolphthalein, fluorescein, Alizarin and Indigo. | 35 | | | | | r r,, | | | | ## **Suggested Readings:** - 1. Davis, B. G., Fairbanks, A. J., *Carbohydrate Chemistry*, Oxford Chemistry Primer, Oxford University Press. - 2. Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education). - 3. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed., W. H. Freeman. - 4. Berg, J. M., Tymoczko, J. L. & Stryer, L. *Biochemistry 7th Ed.*, W. H. Freeman. - 5. Morrison, R. T. & Boyd, R. N. *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). - 6. Patrick, G. L. Introduction to Medicinal Chemistry, Oxford University Press, UK, 2013. - 7. Singh, H. & Kapoor, V.K. Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, Pitampura, New Delhi, 2012. - 8. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 13 (2006). - 9. Ball, D. W. Physical Chemistry Thomson Press, India (2007). - 10. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004). - 11. R.B. Seymour & C.E. Carraher: *Polymer Chemistry: An Introduction*, Marcel Dekker, Inc. New York, 1981. - 12. G. Odian: *Principles of Polymerization*, 4thEd. Wiley, 2004. - 13. F.W. Billmeyer: *Textbook of Polymer Science*, 2nd Ed. Wiley Interscience, 1971. - 14. P. Ghosh: Polymer Science & Technology, Tata McGraw-Hill Education, 1991 **Note**: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University **Suggested online links:** http://heecontent.upsdc.gov.in/Home.aspx https://nptel.ac.in/courses/104/105/104105124/ https://nptel.ac.in/courses/103/106/105106204/ https://nptel.ac.in/courses/104/105/104105034/ https://nptel.ac.in/courses/104/103/104103121/ https://nptel.ac.in/courses/104/102/104102016/ https://nptel.ac.in/courses/104/106/104106106/ https://nptel.ac.in/courses/104/105/104105120/ ## This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class # Assessment and presentation of Assignment (10 marks) 04 Unit tests (Objective): Max marks of each unit test = (10 marks) Overall performance throughout the semester (05 marks) (Discipline, participation in different activities) Course prerequisites: To study this course, a student must have Passed Sem-I, Theory paper-1 Suggested equivalent online courses: Further Suggestions: ## Semester-II, Paper-2 (Practical) Course Title: Biochemical Analysis | Programme: Certificate in Bioorganic and Medicinal Chemistry Year: | | | Semester: II | | | |---|--|------------------------|--------------|---|-------------------| | | · · | Subje | ct: Chemistr | у | | | Course Title Course Code: B020202P | | | Biochemic | al Analysis | | | This cours | | acids, nucleic acids d | rug molecu | erimental knowledge of biomole
les. Upon successful completion
ceutical industries. | | | Credits: 2 | | | Elective | | | | Max. Marks: 25+75 = 100 | | | | Min. Passing Marks: | | | - | Practical | , | | | 60-h | | Unit | Topics | | | | No of
Lectures | | I | Qualitative and quantitative analysis of Carbohydrates: 1. Separation of a mixture of two sugars by ascending paper chromatography 2. Differentiate between a reducing/ nonreducing sugar 3. Synthesis of Osazones. | | | | | | П | Qualitative and quantitative analysis of Proteins, amino acids and Fats Isolation of protein. Determination of protein by the Biuret reaction. TLC separation of a mixture containing 2/3 amino acids Paper chromatographic separation of a mixture containing 2/3 amino acids Action of salivary amylase on starch To determine the concentration of glycine solution by formylation method. To determine the saponification value of an oil/fat. To determine the iodine value of an oil/fat | | | | | | Ш | Determination and identification of Nucleic Acids 1. Determination of nucleic acids 2. Extraction of DNA from onion/cauliflower | | | | | | IV | Synthesis of Simple drug molecules 1. To synthesize aspirin by acetylation of salicylic acid and compare it with the ingredient of an aspirin tablet by TLC. 2. Synthesis of barbituric acid 3. Synthesis of propranolol | | | | 13 | ## **Suggested Readings:** - 1. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry*, 5th Ed., Pearson (2012). - 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education. - 3. Vogel's Qualitative Inorganic Analysis, Revised by G. Svehla. - 4. Vogel, A.I. A Textbook of Quantitative Analysis, ELBS. 1986 - 5. Furniss, B.S.; Hannaford, A.J.; Rogers, V.; Smith, P.W.G.; Tatchell, A.R. *Vogel's Textbook of Practical Organic Chemistry*, ELBS. - 6. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry, Universities Pres - 7. Cooper, T.G. Tool of Biochemistry. Wiley-Blackwell (1977). - 8. Wilson, K. & Walker, J. Practical Biochemistry. Cambridge University Press (2009). - 9. Varley, H., Gowenlock, A.H & Bell, M.: Practical Clinical Biochemistry, Heinemann, **Note**: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University **Suggestive digital platforms web links** - 1. https://www.labster.com/chemistry-virtual-labs/ - 2. https://www.vlab.co.in/broad-area-chemical-sciences - 3. http://chemcollective.org/vlabs This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class | This course can be opted as an electi | ve by the students of following subjects. Chemistry in 12 Class | | | | | |--|---|--|--|--|--| | Suggested Continuous Evaluation Methods: | | | | | | | Viva voce | (10 marks) | | | | | | Mock test | (10 marks) | | | | | | Overall performance | (05marks) | | | | | | Course prerequisites: To study this of | course, a student must have Opted Sem-II, Theory Ppaer-1. | | | | | | Suggested equivalent online courses: | | | | | | | Further Suggestions: | | | | | | | | | | | | |