B.A./B.Sc.II (SEMESTER-III) PAPER-I Algebra & Mathematical Methods

Semester: Third

Programn	me: Diploma	Year: Second	Semester: Inira		
Class: B.A	A./B.Sc.				
			Subject: Mathematics		
Course Co	ode: B030301T		Course Title: Algebra & Mathematical Methods		
Course or	utcomes:				
CO1: Gro	oup theory is one	of the building blocks	of modern algebra. Objective of this course is to introduce students to basic concepts of Group,	Ring theor	
and their p	properties.				
CO2: A st	tudent learning t	his course gets a conce	ept of Group, Ring, Integral Domain and their properties. This course will lead the student to base	sic course in	
advanced i	mathematics and	l Algebra.			
CO3: The	e course gives en	nphasis to enhance stud	ents' knowledge of functions of two variables, Laplace Transforms, Fourier Series.		
CO4 : On	successful comp	oletion of the course st	udents should have knowledge about higher different mathematical methods and will help him	in going fo	
higher stud	dies and research	1.			
	Credits: 6		Core Compulsory / Elective		
	Max. Marks: 2	5+75	Min. Passing Marks:		
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0		
			Part- A		
			Algebra		
	1		71150714	No. of	
Unit	Topics				
	Introduction to Indian ancient Mathematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).				
I	Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups,				
	Generators of a group, Cyclic groups.				
	Generators of a	a group, Cyche groups.			
II	Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition,				
11	Lagrange's theorem and its consequences, Fermat and Euler theorems				
	Normal subgroups, Quotient groups, Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on				
III	isomorphism.				
	Rings, Subrings, Integral domains and fields, Characteristic of a ring, Ideal and quotient rings, Ring homomorphism, Field of quotient				
	of an integral domain.				
IV	or an integral contain.				
				I	

UG MATHEMATICS 15

Part- B Mathematical Methods					
V	Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians.				
VI	Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.				
VII	Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	11			
VIII	Calculus of variations-Variational problems with fixed boundaries- Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in parametric form.				

Suggested Readings(Part-A Algebra):

- 1. J.B. Fraleigh, A first course in Abstract Algebra, Addison-weley
- 2. I. N. Herstein, Topics in Algebra, John Wiley & Sons
- 3. Suggested digital plateform: NPTEL/SWAYAM/MOOCS
- **4.** Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part- B Mathematical Methods):

- 1. T.M. Apostal, Mathematical Analysis, Person
- 2. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata -McGrawHill
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 4. Suggested digital plateform: NPTEL/SWAYAM/MOOCs
- **5.** Course Books published in Hindi may be prescribed by the Universities.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type Max. Marks 10 Class Tests Online Quizzes/ Objective Tests 5 Presentation 5 Assignment (Introduction to Indian ancient Mathematics and Mathematicians) 5 Course prerequisites: To study this course, a student must have subject Mathematics in class 12th

Suggested equivalent online courses:

Further Suggestions:

UG MATHEMATICS 16