BACHELOR OF SCIENCE (BOTANY)			
Programme/Class: Bachelor of Science	Year: III	Semester: V Paper-I	
Subject: BOTANY			
Course Code: B040501T Course Title: Plant Physiology, Metabolism & Biochemistr			

Course outcomes:

After the completion of the course the students will be able to:

- 1. Understand the role of Physiological and metabolic processes for plant growth and development.
- 2. Learn the symptoms of Mineral Deficiency in crops and their management.
- 3. Assimilate Knowledge about Biochemical constitution of plant diversity.
- 4. Know the role of plants in development of natural products, nutraceuticals, dietary supplements, antioxidants

Credits: 4	Core Compulsory
Max. Marks: 25+75	Min. Passing Marks:

Total No. of Lectures-Tutorials-Practical (in hours per week) 4-0-0

Unit	Торіс	No. of Lectures(60hrs)
I	Plant water relation, Mineral Nutrition, Transpiration and translocation in phloem Importance of water, water potential and its components; Transpiration and its significance; Factors affecting transpiration; Root pressure and guttation. Criteria of essentiality of elements; Role of essential elements; Symptoms of mineral deficiency in major crops, Transport of ions across cell membrane, active and passive transport, Composition of phloem sap, girdling experiment; Pressure flow model.	7
II	Carbon Oxidation Krebs cycle, Glycolysis, fate of pyruvate- aerobic and anaerobic respiration and fermentation, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative decarboxylation of pyruvate, regulation of Krebs cycle, mitochondrial electron transport, oxidative phosphorylation, ATP-Synthetase, Chemiosmotic mechanism, P/O ratio, cyanide-resistant respiration, factors affecting respiration.	7
III	Nitrogen Metabolism Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-legumes), Physiology and biochemistry of nitrogen fixation, Ammonia assimilation (GS-GOGAT), reductive amination and transamination, amino acid synthesis.	8
IV	Lipid Metabolism & Photosynthesis Lipid Metabolism: Synthesis and breakdown of triglycerides, -oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilization of lipids during seed germination, -oxidation.; Photosynthesis: Pigments, Action spectra and Enhancement effect, Electron transport system and Photophosphorylation, C3 & C4 photosynthesis, CAM- Reaction and Significance	7
V	Plant Development, Movements, Dormancy & Responses Developmental roles of Phytohormones (auxins, gibberellins, cytokinins, ABA, ethylene.) autonomic & paratonic movements, Control and Coordination in plants, Photoperiodism (SDP, LDP, Day neutral plants); Phytochrome (discovery and structure), red and far red-light responses on photomorphogenesis, Seed physiology & Dormancy, Vernalization & Senescence	8

VI	Biomolecules Carbohydrates: Nomenclature and classification; Role of monosaccharides (glucose, fructose, sugar alcohols – mannitol and sorbitol); Disaccharides (sucrose, maltose, lactose), Oligosaccharides and polysaccharides (structural-cellulose, hemicelluloses, pectin, chitin, mucilage; storage – starch, inulin). Lipids: Storage lipids: Fatty acids structure and functions, Structural lipids: Phosphoglycerides; Lipid functions: cell signals, cofactors, prostaglandins, Introduction of lipid micelles, monolayers, bilayers	8
VII	Proteins: Structure of amino acids; Peptide bonds; Levels of protein structure-primary, secondary, Ramchandran plot,tertiary and quaternary; Isoelectric point; Protein denaturation and biological roles of proteins Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleic acids, Nucleic acid denaturation &Re-naturation, MiRNA	7
VIII	Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; mechanism of action (activation energy, lock and key hypothesis, induced- fit theory), enzyme inhibition and factors affecting enzyme activity, Allosteric enzymes & Abzymes. Phytonutrients, Nutraceuticals, dietary supplements and antioxidants.	8

Course Books published in Hindi may be prescribed by the Universities.

- 3. 000 000000 000 **जनन**00000. **Madan Kumar. 2020.**
- 4. Plant Physiology and BiochemistryISBN #:81-301-0035-5Sunil D Purohit, K. Ahmed & Gotam K Kukda Edition: 2013Pages: 368 + VIII Text Book (Hindi)
- 5. Dhankar Sharma Trivedi RBD Publishing
- . Hopkins, W.G. & Hiiner, N.P. Introduction to Plant Physiology (3rd ed.) 2004, John Wiley & Sons.
- 2. A Handbook On Mineral Nutrition And Diagnostic Techniques For Nutritional Disorders Of Crops (pb)ISBN: 9788177543377Edition: 01Year: 2011Author: Pathmanabhan G, Vanangamudi M, Chandrasekaran CN, Sathyamoorthi K, Babu CR, Babu RC, Boopathi PNPublisher: Agrobios (India)
- 3. Jain, V.K. Fundamental of Plant Physiology (7th ed.) 2004. S. Chand and Company.
- 4. Salisbury, F.B. & Ross, C.W. Plant Physiology (4th ed.), 19992, Wadsoworth Publishing Company.
- 5. Panday, S.N. & Sinha, B.K. Plant Physiology (4th ed.), 2006, Vikas Publishing House Pvt. Ltd.
- 6. Mukherjee, S. & Ghosh, A. Plant Physiology (2nd ed.), 2005, New Central Book Agency.
- 7. Chaudhuri, D., Kar, D.K., and Halder, S.A. Handbook of Plant Biosynthetic Pthways 2008, New Central Book. Agencies.
- 8. Voet, D. and Voet, J.G., Bio-Chemistry (3rd ed.), 2005, John Wiley & Sons.
- 9. Mathews, C.K., Van Holder, K.E. & Ahren, K.G. Bio-Chemistry (3rd ed.), 2000, Pearson Education.
- 10. Lehninger Principles of Biochemistry. Sixth Edition. 2013. David L. Nelson, Michael M. Cox. Freeman, Macmillan.
- 11. Srivastava, HN. 2006. Pradeep's Botany Vol. V. Pradeep Publications, Jalandhar.
- 12. Verma, SK. Plant Physiology and Biochemistry. S. Chand & Sons, New Delhi.
- 13. Buchanon, Gruissen and Jones. Plant Physiology & Biochemistry: Biochemistry and Molecular Biology of plants, 2000, I.K. International.
- 14. Ramesh Gupta. Efficacy, Safety and Toxicity brings together all current knowledge regarding nutraceuticals and their potential toxic effects. 2016. Elsevier.
- 15. Harborne, J.B. 1973. Phytochemical Methods. John Wiley & Sons, New York.
- 16. Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R., 2008 Molecular Biology of the Gene 6th edition. Cold Spring Harbour Lab. Press, Pearson Pub.
- 17. P.K. Gupta. BIOTECHNOLOGY AND GENOMICS. Rastogi Publications, 7th Reprint (1st Edition): 2016-2017

This course can be opted as an elective by the students of following subjects: Open to all but special for following: B.Sc. Math, B.Sc. Statistics, B.Sc. Nutrition, B.Sc. Biophysics, B.Sc. Biotech,

Suggested Continuous Evaluation Methods: Continuous Internal Evaluation shall be based on allotted Assignment and Class Tests

Internal Assessment	Marks
Class Interaction	5
Quiz	5
Seminar	7
Assignment (Charts/ Flora/ Rural Service/ Technology Dissemination)	8
	25

Course prerequisites:

Qualification: To study this course, a student must have qualified 10+2 with Biology/ NSQF level 3 from Sector Skill Councils / Diploma holder from ITI in (Biology/ Agriculture/ Forestry/ Biotech//Gardening)

Facilities: Smart and Interactive Class

Other Requisites: Video collection, Books, CDs, Access to On-line resources, Display Charts

Suggested equivalent online courses:

https://www.classcentral.com/course/swayam-plant-physiology-and-metabolism-17732

https://www.wiziq.com/course/3249-plant-physiology-in-10-live-online-classes

https://www.easybiologyclass.com/plant-physiology-free-lecture-notes-online-tutorials-lecture-notes-ppts-mcqs/

https://onlinecourses.swayam2.ac.in/cec19_bt09/preview

Programme/Class: <i>Bachelor of Science</i>	Year: III	Semester: V Paper-II
	Subject: BOTANY	
Course Code: B040502T	Course Title: Molecular Biology & Bioinformatics	

Course outcomes:

After the completion of the course the students will be able to:

- 1. Understand nucleic acids, organization of DNA in prokaryotes and Eukaryotes, DNA replication mechanism, genetic code and transcription process.
- 2. Know about Processing and modification of RNA and translation process, function and regulation of expression.

3. Gain working knowledge of the practical and theoretical concepts of bioinformatics

Credits: 4	CC / Elective
Max. Marks: 25+75	Min. Passing Marks:

Total No. of Lectures-Tutorials-Practical (in hours per week) 4-0-0

Unit	Торіс	No. of Lectures(60hrs)
I	Genetic material Miescher to Watson and Crick- historic perspective, Griffith's and Avery's transformation experiments, Hershey-Chase, bacteriophage experiment, DNA structure, types of DNA, types of genetic material. DNA replication (Prokaryotes and eukaryotes): semiconservative. DNA replication (Prokaryotes and eukaryotes): bidirectional replication, semiconservative, semi discontinuous RNA priming, \acute{O} (theta) mode of replication, replication of linear, dsDNA, replicating the 5' end of linear chromosome including replication enzymes.	7

II	Transcription & Regulation of gene expression Types of structures of RNA (mRNA, tRNA, rRNA), RNA polymerase- various types; Translation, (Prokaryotes and eukaryotes), genetic code. Regulation of gene expression in Prokaryotes: Lac operon and Tryptophan operon; and in Eukaryotes	7
111	Principles & Techniques of genetic engineering Blotting techniques: Northern, Southern and Western Blotting, DNA Fingerprinting; Molecular DNA markers i.e. RAPD, RFLP, SNPs; DNA sequencing, PCR and Reverse Transcriptase-PCR. Hybridoma and monoclonal antibodies, ELISA and Immunodetection. Antibody Engineering.	8
IV	Applications of Genetic engineering Pest resistant (Bt-cotton); herbicide resistant plants (RoundUp Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); Industrial enzymes (Aspergillase, Protease, Lipase); Genetically Engineered Products, Biosafety concerns	7
V	Bioinformatics & its applications Computer fundamentals - programming languages in bioinformatics, role of supercomputers in biology. Historical background. Scope of bioinformatics - Genomics, Transcriptomics, Proteomics, Metabolomics, Molecular Phylogeny, computer aided Drug Design (structure based and ligand based approaches), Systems Biology and Functional Biology. Applications and Limitations of bioinformatics.	
VI	Biological databases: Introduction to biological databases - primary, secondary and composite databases, NCBI, nucleic acid databases (GenBank, EMBL, DDBJ, NDB), protein databases (PIR, Swiss-Prot, TrEMBL, PDB), metabolic pathway database (KEGG, EcoCyc, and MetaCyc), small molecule databases (PubChem,)	8
VII	Data Generation and Data Retrieval Generation of data (Gene sequencing, Protein sequencing, Mass spectrometry, Microarray), Sequence submission tools (BankIt, Sequin, Webin); Sequence file format (flat file, FASTA, GCG, EMBL, Clustal, Phylip, Swiss-Prot); Sequence annotation; Data retrieval systems (SRS, Entrez)	7
VIII	Phylogenetic analysis Similarity, identity and homology, Alignment – local and global alignment, pairwise and multiple sequence alignments, alignment algorithms. Methods of Alignment (Dot matrix, Dynamic Programming, BLAST and FASTA); Phylogenetic analysis: Construction of phylogenetic tree, dendrograms, methods of construction of phylogenetic trees.	8

Suggested Readings: Course Books published in Hindi may be prescribed by the Universities. 1. Dr Pooja Rai. □□□□□□□□□□□□ by RBD Publisher 3. Plant Physiology and Biochemistry ISBN #: 81-301-0035-5Author: Sunil D Purohit, K. Ahmed & Gotam K KukdaEdition: 2013Pages: 368 + VIIIType: Text Book (Hindi) Molecular Biology Biotechnology ISBN #: 81-301-0033-9Author: Sunil D Purohit & Gotam K Kukda Edition: 2013Pages: 366 + XType: Text Book (Hindi) Apex Publishing House, Udaipur, Rajasthan 5. Bioinformatics Paperback – 1 January 2015 by Dr Archana Pandeya (Author), Santosh Choubey (Editor), & 2 More Hindi AISECT Ltd. BIOTECHNOLOGY AND GENETIC ENGINEERING (Hindi, Hardcover, Dr. Archna Nigam)

- 1. Primrose, SB. 1995. Principles of Genome Analysis. Blackwell Science Ltd.Oxford, UK...
- 2. E.J. Gardner and D.P. Snustad. PRINCIPAL OF GENETICS (1984), John Wiley & Sons, Ney York.
- 3. Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R., 2008 Molecular Biology of the Gene 6th edition. Cold Spring Harbour Lab. Press, Pearson Pub.
- 4. Freifelder Molecular Biology.
- 5. P.K. Gupta. BIOTECHNOLOGY AND GENOMICS. Rastogi Publications, 7th Reprint (1st Edition): 2016-2017.
- 6. Ghosh, Z., Mallick, B. (2008). Bioinformatics Principles and Applications, 1st edition. New Delhi, Delhi: Oxford University Press.
- 7. Baxevanis, A.D. and Ouellette, B.F., John (2005). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd edition. New Jersey, U.S.: Wiley & Sons, Inc.
- 8. Roy, D. (2009). Bioinformatics, 1st edition. New Delhi, Delhi: Narosa Publishing House.
- 9. Andreas, D., Baxevanis, B.F., Francis, Ouellette. (2004). Bioinformatics: A practical guide to the analysis of genes and proteins, 3rd edition. New Jersey, U.S.: John Wiley and Sons.
- 10. Pevsner J. (2009). Bioinformatics and Functional Genomics, 2nd edition. New Jersey, U.S.: Wiley Blackwell.
- 11. Xiong J. (2006). Essential Bioinformatics, 1st edition. Cambridge, U.K.: Cambridge University Press
- 12. A Textbook Of Basic And Molecular Genetics (pb)ISBN: 9788188826193Edition: 01Year: 2018Author: Dr. Parihar

This course can be opted as an elective by the students of following subjects:

Open to all but special for following: B.Sc. Math, B.Sc. Statistics, B.Sc. Nutrition, B.Sc. Biophysics, B.Sc. Biotech, B.Sc. Forestry, B.Sc. Agriculture.

Suggested Continuous Evaluation Methods: Continuous Internal Evaluation shall be based on allotted Assignment and Class Tests. The marks shall be as follows:

Internal Assessment	Marks
Class Interaction	5
Quiz	5
Seminar	7
Assignment (Charts/ Flora/ Rural Service/ Technology Dissemination)	8
	25

Course prerequisites:

Qualification: To study this course, a student must have qualified 10+2 with Biology/ NSQF level 3 from Sector Skill Councils / Diploma holder from ITI in (Biology/ Agriculture/ Forestry/ Biotech)

Facilities: Smart and Interactive Class

Other Requisites: Video collection, Books, CDs, Access to On-line resources, Display Charts

Suggested equivalent online courses:

https://www.edx.org/learn/molecular-biology

https://www.vlab.co.in/broad-area-biotechnology-and-biomedical-engineering

https://www.classcentral.com/course/swayam-genetic-engineering-theory-and-application-14090

https://www.coursera.org/courses?query=genetics

https://www.coursera.org/courses?query=molecular%20biology

https://www.edx.org/learn/genetic-engineering

https://www.mooc-list.com/tags/genetic-engineering

https://www.classcentral.com/course/edx-molecular-biology-part-1-dna-replication-and-repair-2907

https://nptel.ac.in/courses/102/103/102103013/

Programme/Class: Bachelor of Science	Year: III	Semester: V Paper-III	
Subject: Botany			
Course Code: B040503P Course Title: Experiments in physiology, Biochemistry & molecular biology		logy, Biochemistry &	

Course outcomes:

After the completion of the course the students will be able to:

- 1. Know and authentic the physiological processes undergoing in plants along with their metabolism
- 2. Identify Mineral deficiencies based on visual symptoms
- 3. Understand and develop skill for conducting molecular experiments for genetic engineering

Credits: 2	Core Compulsory
Max. Marks: 25 + 75	Min. Passing Marks:

Total No. of Lectures-Tutorials-Practical (in hours per week) 0-0-2

Unit	Topic*	No. of Lectures(60		
	*(Perform any three from each unit based on facility)	hrs)		
I	Plant water relation, Mineral Nutrition and translocation in phloem	8		
_	1. Determination of osmotic potential of plant cell sap by plasmolytic method using			
	leaves of Rhoeo / Tradescantia.			
	2. Osmosis – by potato osmoscope experiment			
	3. Effect of temperature on absorption of water by storage tissue and determination of Q10.			
	4. Experiment to demonstrate the transpiration phenomenon with the bell jar method			
	5. Experiment for demonstration of Transpiration by Four-Leaf Experiment:			
	6. Structure of stomata (dicot & monocot)			
	7. Determination of rate of transpiration using cobalt chloride method.			
	8. Experiment to measure the rate of transpiration by using Farmer's Potometer			
	9. Experiment to measure the rate of transpiration by using Ganong's potometer			
	10. Effect of Temperature on membrane permeability by colorimetric method.			
	11. Study of mineral deficiency symptoms using plant material/photographs.			
II	Nitrogen Metabolism, Photo Synthesis & Respiration			
	 A basic idea of chromatography: Principle, paper chromatography and column chromatography; demonstration of column chromatography. Separation of plastidial pigments by solvent and paper chromatography. Estimation of total chlorophyll content from different chronologically aged leaves (young, mature and senescence) by Arnon method. Effect of HCO₃ concentration on oxygen evolution during photosynthesis in an aquatic 			
	plant and to find out the optimum and toxic concentration (either by volume measurement or			
	bubble counting).			
	5. Measurement of oxygen uptake by respiring tissue (per g/hr.)			
	6.Determination of the RQ of germinating seeds.			
	7. Effect of light intensity on oxygen evolution in photosynthesis using Wilmott' bubble			
	Plant Development, Movements, Dormancy & Responses			
III	1. Geotropism and phototropism — Klinostàt	8		
	2. Hydrotropism			
	a. Measurement of growth — Arc and Liver Auxonometer			
	3. To study the phenomenon of seed germination (effect of light).			
	4. To study the induction of amylase activity in germinating grains.			

		1
	5. Test of seed viability by TTC method.	
	6. To study the effect of different concentrations of IAA on <i>Avena</i>	
	coleoptile elongation (IAA bioassay)	
	Techniques for biochemical analysis 1. Weighing and Preparation of solutions -percentage, molar & normal	8
IV	solutions, dilution from stock solution etc.	o
	2. Separation of amino acids by paper chromatography.	
	3. Detection of organic acids: citric, tartaric, oxalic and malic from laboratory	
	samples., 4. Qualitative Analysis of carbohydrates,	
	4. Qualitative Analysis of carbohydrates,5. Estimation of reducing sugar by anthrone method,	
	6. Qualitative Analysis of Lipids	
	7. Qualitative analysis of Amino acids and Proteins	
	8. Quantitative Analysis of Nucleic Acids,	
	9. Analysis of dietary supplements, nutraceuticals & antioxidants	
	10. Testing of adulterants in food items.	
T 7	Genetic material	7
V	1. Instruments and equipments used in molecular biology.	
	2. Preparation of LB medium and cultivating E.coli on it.	
	3. Isolation of Genomic DNA	
	4. Isolation of DNA from plants	
	5. Examination of the purity of DNA by agarose gel electrophoresis.	
	6. Quantification of DNA by UV-spectrophotometer	
	7. Estimation of DNA by diphenylamine method.	
	7. Estimation of DNA by diphenylamine method.	
VI	Preparation of models/ charts:	
	1. Study of experiments establishing nucleic acid as genetic material (Avery et al,	
	Griffith's, Hershey & Chase's and Fraenkel & Conrat's experiments)through	7
	photographs	
	2. Numericals based on DNA re-association kinetics (melting profiles and Cot	
	curves)	
	3. Study of DNA replication through photographs: Modes of replication - Rolling	
	circle, Theta and semi-discontinuous; Semiconservative model of replication	
	(Messelson and Stahl's experiment); Telomerase assisted end-replication of linear	
	DNA	
	4. Study of structures of : tRNA (2D and 3D); prokaryotic RNA polymerase and	
	eukaryotic RNA polymerase II through photographs	
	5. Study of the following through photographs: Assembly of Spliceosome	
	machinery; Splicing mechanism in group I & group II introns; Ribozymes and	
	Alternative splicing	
	6. Understanding the regulation of lactose (lac) operon (positive & negative	
ı	regulation) and tryptophan (trp) operon (Repression and De-repression &	
	Attenuation) through photographs.	
	7. Understanding the mechanism of RNAi by photographs	
VII	Genetic Engineering	
	1. Isolation of protoplasts.	7
	2. Construction of restriction map of circular and linear DNA from the data	
	provided.	
	3. Isolation of plasmid DNA.	
	4. Restriction digestion and gel electrophoresis of plasmid DNA (demonstration/	
	photograph).	
ı	5. Calculate the percentage similarity between different cultivars of a species	
	using RAPD profile. Construct a dendrogram and interpret results.	

	 6. Agarose gel analysis of plasmid DNA 7. Restriction digestion of plasmid DNA -Demonstration of PCR 	
	Applications of Genetic engineering	7
VIII	 ELISA Test, Viability tests of cells Study of methods of gene transfer through photographs: Agrobacterium- 	,
	mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment. 4. Study of steps of genetic engineering for production of Bt cotton, Golden rice, FlavrSavr tomato through photographs.	

Suggested Readings:

Course Books published in Hindi may be prescribed by the Universities.

- - 1. Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley & Sons. Inc.
 - 2. A Laboratory Manual Of Plant, Physiology, Biochemistry And Ecology ISBN: 9788177544589Edition: 01Year: 2012Author: Akhtar InamPublisher: Agrobios (India)
 - 3. Advanced Methods In Physiology And Biochemistry (pb)ISBN: 9789381191132Edition: 01Year: 2016Author: Padmanaban G, Chandrasekaran CN, Thangavelu AU, Dr. Sivakumar R, Kalimuthu N, Dr. Boominathan P, Dr. Anbarasan P, Agrobios.
 - 4. Methods in Plant Biochemistry and Molecular Biology. 1997. Dashek, WV (ed.). CRC Press.
 - 5. Wilson and Walker .Practical Biochemistry: Principles and Techniques. Cambridge University Press.U.K.
 - 6. Thimmaiah, SR. 2004. Standard Methods of Biochemical Analysis. Kalyani Publishers.
 - 7. Henry, RJ. 1997. Practical Application of Plant Molecular Biology. Chapman & Hall, London

This course can be opted as an elective by the students of following subjects:

Open to all but special for following: B.Sc. Math, B.Sc. Statistics, B.Sc. Nutrition, B.Sc. Biophysics, B.Sc. Biotech, B.Sc. Forestry, B.Sc. Agriculture.

Suggested Continuous Evaluation Methods:

Continuous Internal Evaluation shall be based on allotted Assignment and Class Tests. The marks shall be as follows:

Internal Assessment	Marks
Class Interaction	5
Quiz	5
Seminar	7
Assignment (Charts/ Flora/ Rural Service/ Technology Dissemination)	8
	25

Course prerequisites:

Qualification: To study this course, a student must have qualified 10+2 with Biology/ NSQF level 3 from Sector Skill Councils / Diploma holder from ITI in (Biology/ Agriculture/ Forestry/ Biotech/ /Gardening)

Facilities: Smart and Interactive Class

Other Requisites: Video collection, Books, CDs, Access to On-line resources, Display Charts

Lab requisites: Electrophoresis units, Gelrocker, UV-transilluminator, Vortex Mixer, Shaker, CVT,

HiMedia Biotechnology & Molecular biology Kits/Chemicals, Micropippettes, Elisa reader/Microtitre Reader

Suggested equivalent online courses:

https://www.edx.org/learn/molecular-biology

https://krishikosh.egranth.ac.in/handle/1/5810039999

https://www.classcentral.com/course/swayam-genetic-engineering-theory-and-application-14090

https://www.coursera.org/courses?query=genetics

https://www.coursera.org/courses?query=molecular%20biology

https://www.edx.org/learn/genetic-engineering

https://www.mooc-list.com/tags/genetic-engineering

https://www.classcentral.com/course/edx-molecular-biology-part-1-dna-replication-and-repair-2907

Programme/Class: Bachelor of Science	Year: III	Semester: V Paper-IV	
Subject: BOTANY			
Course Code: - B040504R	Course Title: Project in Botany for Pre-graduation		

Course outcomes:

- Project work will supplement field experimental learning and deviations from classroom and laboratory transactions.
- project work will enhance the capability to apply gained knowledge and understanding for selecting, solving and decision-making processes.
- It will promote creativity and the spirit of enquiry in learners.
- They will learn to consult Scientists, libraries, laboratories and herbariums and learn importance of discussions, Botanical & field trips, print and electronic media, internet etc. along with data documentation, compilation, analysis & representation in form of dissertation writing.
- It will enhance their abilities, enthusiasm, and interest.

Credits: 03	Core: Compulsory
Max. Marks: 25+75	Min. Passing Marks:

Total No. of Lectures-Tutorials-Practical (in hours per week): **0-0-3**.

Suggestive List Of PROJECTS

- 1. Rural Areas: Flora of a city/ village, Biodiversity of Village, Soil & seed testing service provision to farmers,
- 2. Industrial waste management
- 3. water pollution status of rural water & promotion of WASH in villages
- 4. Plant Disease identification in farms, nurseries and orchards.
- 5. Digital portal for plants: Campus, city or particular area
- 6. Rare and endangered plants & their conservation & domestication
- 7. Air pollution tolerance index (APTI): Screening of sensitive/tolerant plant species at various locations in particular area
- 8. Science Communication by Creating science documentaries of innovators, Internet Science (Social media, Websites, Blogs, Youtube, Podcast etc.)
- 9. Science Outreach Talks and Public Sensitization for plant biodiversity conservation sensitization of public.
- 10. Phytochemistry of medicinal plants & their antimicrobial, nutraceutical and antioxidant properties
- 11. Study of pollen grains in different flowers
- 12. Study of stomata in different plants
- 13.Study of various types of secretory and special tissues in plants.

Refer: libraries, journals, Memoirs, encyclopaedias, herbaria, Museums, etc.

This course can be opted as an elective by the students of following subjects:

Open to all

Suggested Continuous Evaluation Methods:

Continuous Internal Evaluation shall be based on allotted Assignment and Class Tests. The marks shall be as follows:

Internal Assessment	Marks
Class Interaction	5
Seminar	10
Thesis/dissertation	10
	25

Course prerequisites:

Qualification: To study this course, a student must have qualified 10+2 with Biology/ NSQF level 3 from Sector Skill Councils / Diploma holder from ITI in (Biology/ Agriculture/ Biotech/ Forestry/ Microbiology/Gardening /biomedical Science.

Facilities: Smart and Interactive Class

Other Requisites: All listed under all papers of the course.

Suggested equivalent online courses:

https://ndl.iitkgp.ac.in/

https://asiafoundation.org/what-we-do/books-for-asia?gclid=CjwKCAiA7939BRBMEiwA-hX5J-

QhBITSyPnvj3r8yeio-L9f5uTy1a6oEoALCLa9Ebu0pyz858yQZxoC5wkQAvD BwE

http://www.dli.ernet.in/ http://www.ulib.org/

http://www.tkdl.res.in/

http://www.vigyanprasar.gov.in/digilib

Directory of Open Access Repositories (DOAR)http://www.opendoar.org

Registry of Open Access Repositories (ROAR)http://roar.eprints.org/

http://www.iscnagpur.ac.in/knowledge learning files/5.7 General Open Access e-Resources.pdf