Programme/Class: Degree	Year: Third	Semester:Sixth
Subject: ZOOLOGY		
Course Code:B050601T	Course Title: Evolutionary and Developmental Biology	

Course outcomes:

The student at the completion of the course will be able to:

- Understand that by biological evolution we mean that many of the organisms that inhabit the earth today are different from those that inhabited it in the past.
- Understand that natural selection is one of several processes that can bring about evolution, although it can also promote stability rather than change.
- Understand how the single cell formed at fertilisation forms an embryo and then a full adult organism.
- Integrate genetics, molecular biology, biochemistry, cell biology, anatomy and physiology during embryonic development.
- Understand a variety of interacting processes, which generate an organism's heterogeneous shapes, size, and structural features.
- Understand how a cell behaves in response to an autonomous determinant or an external signal, and the scientific reasoning exhibited in experimental life science.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Topic	Total No. of Lectures (60)
I	Theories of Evolution	8
II	Population Genetics	8
III	Direct Evidences of Evolution Types of fossils, Incompleteness of fossil record, Dating of fossils, Phylogeny of horse	7
IV	Species Concept and Extinction Biological species concept (Advantages and Limitations); Modes of speciation (Allopatric, Sympatric)	7

	Mass extinction (Causes, Names of five major	
	extinctions	
V	Gamete Fertilization and Early Development	6
	 Gametogenesis, Fertilization 	
	Cleavage pattern	
	Gastrulation, fate maps	
	 Developmental mechanics of cell specification 	
	 Morphogenesis and cell adhesion 	
VI	Developmental Genes	8
	Genes and development	
	 Molecular basis of development 	
	 Differential gene expression 	
VII	Early Vertebrate Development	8
	 Early development of vertebrates (fish, birds & 	
	mammals)	
	 Metamorphosis, regeneration and stem cells 	
	 Environmental regulation of development 	
VIII	Late Developmental Processes	8
	The dynamics of organ development	
	 Development of eye, kidney, limb 	
	Metamorphosis: the hormonal reactivation of	
	development in amphibians, insects	
	Regeneration: salamander limbs, mammalian liver,	
	Hydras	
	Aging: the biology of senescence	

Suggested Readings:

- 1. Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing
- 2. Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). *Evolution*. Cold Spring, Harbour Laboratory Press.
- 3. Hall, B. K. and Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and Bartlett Publishers
- 4. Campbell, N. A. and Reece J. B. (2011). *Biology*. IX Edition, Pearson, Benjamin, Cummings.
- 5. Douglas, J. Futuyma (1997). Evolutionary Biology. Sinauer Associates.
- 6. Developmental Biology: T. Subramaniam, (Reprint), Narosa Publishing House Pvt. Ltd., New Delhi (2013)
- 7. Essential Developmental Biology: Jonathan M. W. Slack, (3rd ed.), Wiley-Blackwell. (2012).
- 8. Developmental Biology: From a Cell to an Organism (Genetics & Evolution) eBook: Russ Hodge, Infobase Publishing. (2009).
- 9. Current Topics in Developmental Biology: Roger A. Pedersen, Gerald P. Schatten, Elsevier. (1998).
- 10. Developmental biology: Werner A. Müller, Springer Science & Business Media. (2012).
- 11. Human Embryology and Developmental Biology E-Book: Bruce M. Carlson, Elsevier Health Sciences. (2018).
- 12. Developmental Biology: Michael J. F. Barresi, Scott F. Gilbert, Oxford University Press. (2019).

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects: The eligibility for this paper is 10+2 with Biology as one of the subject

Suggested Continuous Evaluation Methods:
House Examination/Test: 10 Marks
Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks
Class performance/Participation:5 Marks
Further Suggestions: None

At the End of the whole syllabus any remarks/ suggestions: None

Programme/Class: Degree	Year: Third	Semester: Six
Subject: ZOOLOGY		
Course Code:B050602T	Course Title: Ecology, Ethology, Environmental Science and Wildlife	

Course outcomes:

The student at the completion of the course will learn:

- Complexities and interconnectedness of various environmental levels and their functioning.
- Global environmental issues, their causes, consequences and amelioration.
- To understand and identify behaviours in a variety of taxa.
- The proximate and ultimate causes of various behaviours.
- About the molecules, cells, and systems of biological timing systems.
- Conceptualizing how species profitably inhabit in the temporal environment and space out their activities at different times of the day and seasons.
- To interpret the cause and effect of lifestyle disorders contributing to public understanding of biological timing.
- To understand the importance of wildlife conservation.

Credits: 4	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks:as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of Lectures (60)
I	Introduction to Ecology	4
	 History of ecology, Autecology and synecology, Levels of organization, Laws of limiting factors, Study of physical factors 	
II	Organization of Ecosystem	12
	 Levels of organization, Laws of limiting factors, Study of physical factors, Population: Density, natality, mortality, life tables, fecundity tables, survivorship curves, age ratio, sex ratio, dispersal and dispersion ,Exponential and logistic growth, Types of ecosystems with one example in detail, Food chain: Detritus and grazing food chains, , Food web, Energy flow through the ecosystem, Ecological pyramids and Ecological efficiencies, Nutrient and biogeochemical cycle with one example of Carbon cycle 	
III	Community Ecology	7
	Community characteristics: species richness, dominance, diversity, abundance, Ecological succession with one example	

IV	Environmental Hazards	7
	 Sources of Environmental hazards Climate changes Greenhouse gases and global warming Acid rain, Ozone layer destruction 	
V	Effects of Climate Change	6
	 Effect of climate change on public health Sources of waste, types and characteristics, Sewage disposal and its management, Solid waste disposal, Biomedical waste handling and disposal, Nuclear waste handling and disposal, Waste from thermal power plants, 	
	 Case histories on Bhopal gas tragedy, Chernobyl disaster, Seveso disaster and Three Mile Island accident and their aftermath. 	
VI	Behavioural Ecology and Chronobiology	8
	 Origin and history of Ethology, Instinct vs. Learnt Behaviour Associative learning, classical and operant conditioning, Habituation, Imprinting, Circadian rhythms; Tidal rhythms and Lunar rhythms Chronomedicine 	
VII	Introduction to Wild Life	8
	 Values of wild life - positive and negative; Conservation ethics; Importance of conservation; Causes of depletion; World conservation strategies. 	
VIII	Protected areas	8
	 National parks & sanctuaries, Community reserve; Important features of protected areas in India; Tiger conservation - Tiger reserves in India; Management challenges in Tiger reserve 	

Suggested Readings:

- 1. Ecology: Theories & Applications. Peter D. Stiling, 2001, Prentice Hall.
- 2. Ecological Modeling. 2008. Grant, W.E. and Swannack, T.M., Blackwell.
- 3. Ecology: The Experimental Analysis of Distribution and Abundance. Charles J. Krebs, 2016, Pearson Education Inc.
- 4. Elements of Ecology. T.M. Smith and R.L. Smith, 2014, Pearson Education Inc.
- 5. Environmental Chemistry. 2010. Stanley and Manahan, E. CRC, Taylor & Francis. London.
- 6. Environment. Raven, Berg, Johnson, 1993, Saunders College Publishing.
- 7. Essentials of Ecology. G.T. Miller, Jr. & Scott. E. Spoolman, 2014, Brooks/Cole, Cengage Learning.
- 8. Freshwater Ecology: A Scientific Introduction. 2004. Closs, G., Downes, B. and Boulton, A. Wiley-Blackwell publisher, Oxford.
- 9. Fundamental Processes in Ecology: An Earth system Approach. 2007. Wilkinson, D.M. Oxford

University Press, UK.

- 10. Fundamentals of Ecology. E.P. Odum& Gray. W. Barrett, 1971, Saunders
- 11. Caughley, G., and Sinclair, A.R.E. (1994). Wildlife Ecology and Management. Blackwell Science.
- 12. Woodroffe R., Thirgood, S. and Rabinowitz, A. (2005). People and Wildlife, Conflict or Co-existence? Cambridge University.
- 13. Bookhout, T.A. (1996). Research and Management Techniques for Wildlife and Habitats, 5 th edition. The Wildlife Society, Allen Press.
- 14. Sutherland, W.J. (2000). The Conservation Handbook: Research, Management and Policy. Blackwell Sciences
- 15. Hunter M.L., Gibbs, J.B. and Sterling, E.J. (2008). Problem-Solving in Conservation Biology and Wildlife Management: Exercises for Class, Field, and Laboratory. Blackwell Publishing.

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects:

The eligibility for this paper is 10+2 with Biology as one of the subject

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class Performance/Participation: 5 Marks

Furtner Suggestions: None

At the End of the whole syllabus any remarks/ suggestions: None

Programme/Class: Degree	Year: Third	Semester: Sixth
Subject: ZOOLOGY		
Course Code:B050603P	Course Title: Lab on Ecology, Environmental Science, Behavioral Ecology & wildlife	

Course outcomes:

The student at the completion of the course will be able to:

- To understand the basic concepts, importance, status and interaction between organisms and environment.
- Get employment in forest services, sanctuaries, conservatories etc.
- Enable students to take up research in wildlife.

Credits: 2	Core:Compulsory
Max. Marks: 25+75	Min. Passing Marks: as per rules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

Unit	Торіс	Total No. of Lectures (60)
I	 1.Study of life tables and plotting of survivorship curves of different types from the hypothetical/real data provided. 2.Study of population dynamics through numerical problems. 3.Study of circadian functions in humans (daily eating, sleep and temperature patterns). 	26
II	Report on a visit to National Park/Biodiversity Park/Wild life sanctuary	4
III	 Demonstration of basic equipments needed in wildlife studies use, care and maintenance (Compass, Binoculars, Spotting scope, Range Finders, Global Positioning System, Various types of Cameras and lenses) Familiarization and study of animal evidences in the field; Identification of animals through pug marks, hoof marks, scats, pellet groups, nest, antlers etc. Demonstration of different field techniques for flora and fauna 	15
IV	Virtual Labs (Suggestive sites) https://www.vlab.co.in https://zoologysan.blogspot.com www.vlab.iitb.ac.in/vlab	15

Suggested Readings:

- 1. Ecology: The Experimental Analysis of Distribution and Abundance. Charles J. Krebs, 2016, Pearson Education Inc.
- 2. Fundamentals of Ecology. E.P. Odum& Gray. W. Barrett, 1971, Saunders.
- 3. Robert Leo Smith Ecology and field biology Harper and Row publisher
- 4. Bookhout, T.A. (1996). Research and Management Techniques for Wildlife and Habitats, 5th edition. The Wildlife Society, Allen Press.
- 5. Methods and Practice in biodiversity Conservation by David Hawks worth, Springer publication.

Course Books published in Hindi may be prescribed by the Universities and Colleges

This course can be opted as an elective by the students of following subjects:

The eligibility for this paper is 10+2 from Arts/Commerce/Science

Suggested Continuous Evaluation Methods:

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Further Suggestions: None

At the end of the whole syllabus any remarks/ suggestions: University must ensure incorporation of all 04 units including virtual labs in practical evaluation.